On stable solitons and interactions of the generalized Gross-Pitaevskii equation with PT- and non- PT-symmetric potentials.
نویسندگان
چکیده
We report the bright solitons of the generalized Gross-Pitaevskii (GP) equation with some types of physically relevant parity-time- ( PT-) and non- PT-symmetric potentials. We find that the constant momentum coefficient Γ can modulate the linear stability and complicated transverse power-flows (not always from the gain toward loss) of nonlinear modes. However, the varying momentum coefficient Γ(x) can modulate both unbroken linear PT-symmetric phases and stability of nonlinear modes. Particularly, the nonlinearity can excite the unstable linear mode (i.e., broken linear PT-symmetric phase) to stable nonlinear modes. Moreover, we also find stable bright solitons in the presence of non- PT-symmetric harmonic-Gaussian potential. The interactions of two bright solitons are also illustrated in PT-symmetric potentials. Finally, we consider nonlinear modes and transverse power-flows in the three-dimensional (3D) GP equation with the generalized PT-symmetric Scarff-II potential.
منابع مشابه
Numerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC
PT-Symmetry is one of the interesting topics in quantum mechanics and optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the nonlinear directional coupler (NLDC). In the paper we numerically investigate the stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering gain in bar and loss in cross. By using the analytical solutions of pertu...
متن کاملEffect of Relative Phase on the Stability of Temporal Bright Solitons in a PT- Symmetric NLDC
In this paper we numerically investigate the effect of relative phase on thestability of temporal bright solitons in a Nano PT- Symmetric nonlinear directionalcoupler (NLDC) by considering gain in bar and loss in cross. We also study the effect ofrelative phase on the output perturbed bright solitons energies, in the range of 0 to 180 . By using perturbation theory three eigenfunctions an...
متن کاملSolitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-t...
متن کاملSymmetry breaking of solitons in one-dimensional parity-time-symmetric optical potentials.
Symmetry breaking of solitons in a class of one-dimensional parity-time (PT) symmetric complex potentials with cubic nonlinearity is reported. In generic PT-symmetric potentials, such symmetry breaking is forbidden. However, in a special class of PT-symmetric potentials V(x)=g(2)(x)+αg(x)+ig'(x), where g(x) is a real and even function and α a real constant, symmetry breaking of solitons can occ...
متن کاملTopological States in Partially-PT-Symmetric Azimuthal Potentials.
We introduce partially-parity-time (pPT)-symmetric azimuthal potentials composed from individual PT-symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that in such potential excitations carrying topological dislocations exhibit different dynamics for different directions of energy circulation in the initial field distribution. Such nonconservative rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 26 8 شماره
صفحات -
تاریخ انتشار 2016